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Abstract 
Effective market-making requires real-time management of tail risk arising from adverse price 

movements. The study analyses the short-term price dynamics of the CME ES futures at the moments of 

observed top-of-the-book (TOB) quote imbalance. Our findings confirm that TOB imbalance could serve 

as an effective predictor of short-term market movement direction, with statistical significance validated 

over a 5-second post-event horizon.  

To capture market state at imbalance times we introduce and examine additional factors (separately and 

in conjunction with imbalance) as directional predictors. We also explore a simple driftless random walk 

model for weighted mid-price process to estimate probability of TOB price change in the direction 

implicated by imbalance and observe a good match of model forecast with empirical estimates. 

We formulate the market-making quote cancellation problem as a direct optimization task to minimize 

expected trading loss. We introduce a percentile optimization framework to train feed-forward neural 

network. The neural network model learns a multi-factor scoring function that is not only predictive but is 

explicitly optimized for the outcome of the cancellation policy, minimizing Conditional Value-at-Risk 

(CVaR) across multiple operational thresholds. 

When trained on years 2018-2020 and evaluated on out-of-sample years 2021-2024, the neural-network 

based algorithm consistently outperformed all single-factor benchmark algorithms, proving its superiority 

in managing tail risk and improving P&L. 

The study covers seven years of high-frequency CME ES contract data (2018–2024). 
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Introduction 
The application of machine learning to financial risk management has evolved from 
probabilistic forecasting to direct decision optimization. Pioneering work focused 
on quantile regression [1, 2] to model the conditional distribution of returns/losses, 
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providing measures like Value-at-Risk (VaR). This was extended by research on Expected 
Shortfall (ES) / Conditional Value-at-Risk (CVaR) optimization, which directly addresses tail 
risk minimization [3]. 

Concurrently, the field of learning-to-rank [4] demonstrated the power of training models to 
order data based on a utility signal, rather than just predict values. In more recent 
publications, scientists have explored neural networks to estimate financial extremes, 
often by tailoring the loss function to prioritize tail accuracy. 

However, existing methods mostly separate forecasting task and decision-making. A model 
first predicts a distribution (e.g., of loss), then a separate policy is applied to forecast. To 
bridge the gap, we propose end-to-end framework that directly learns a scoring function 
optimized for a specific operational policy. By dynamically learning thresholds and 
leveraging a differentiable, tail-focused loss, our method does not only predict risk - 
it learns to minimize it within a decision policy, unifying forecast and action into a single 
optimization objective. 

Market data 
This study utilizes seven years (2018–2024) of discretely sampled best bid/offer (BBO) 
market data for the CME ES futures continuous contract, with a sampling frequency of one 
second.  

Derived time-series indicators 
Using the discretely resampled one-second TOB snapshots, we compute the following 
auxiliary indicators to capture short-term price dynamics of the market: 

Table 1. indicators to capture short term market dynamics 

Indicator name Description 
Liq—TOB side The less liquid TOB side (BID or ASK): illiquid side 
Liq++ TOB side The more liquid TOB side (BID or ASK): liquid side 
Imbalance TOB size imbalance calculated as: (bid size - ask size)/(bid size + ask size) 
Average bid/ask size 
 

Exponentially weighted moving average of bid and ask sizes with a decay 
period N = 120. 

Norm Liq-- size Ratio of the current illiquid TOB size to its EMA value 
Norm Liq++ size Ratio of the current liquid TOB size to its EMA value 
Weighted mid-price Size-weighted mid-price: w = bid size / (bid size + ask size) 

mid-price = w * ask price + (1-w) * bid price 
Historical volatility 
v5s1 
v60s1 
 

EMA-based volatility calculated from 1-second log returns of weighted 
mid-price (in basis points): 
v5s1 with decay period N = 5 
v60s1 with decay period N = 60 

Z-score EMA based version of z-score indicator with period N = 3600 
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Momentum Momentum (over past N seconds) adjusted by volatility: 
N = 1,2,5,15,30 

Construction of imbalance sample dataset 
Even one-second TOB snapshot dataset is still very large, comprising approximately 20 
million observations per year (250 trading days × 23 hours × 3,600 seconds). To reduce this 
to a more manageable dataset size while preserving statistical significance, we apply the 
following procedures: 

- Imbalance threshold filtering:  Exclude cases where the absolute imbalance is 
below 0.5. This threshold corresponds to a moderate liquidity imbalance (liquid-to-
illiquid size ratio of 3:1). 

- Trading hours filtering: Retain data only from 6:30 PM to 4:05 PM NY time (the next 
day) to exclude non-liquid session start/end time. 

- Random sampling with stratification: Due to the non-uniform density of 
imbalance, we employ a floating acceptance threshold to ensure sufficient 
representation across all imbalance bins and prevent under-sampling of some bins. 

Capturing post event price dynamics 
For each imbalance event selected by our filtering procedure, we collect several output 
variables to quantify the impact of the imbalance and/or other factors on price dynamics 
over a 5-second post-event horizon. 

We differentiate between the liquid (Liq++) and illiquid (Liq--) sides of the TOB. Our analysis 
primarily focuses on the illiquid side, as it presents a decision point for trading algorithms: 

- Market Maker: Whether to maintain or cancel quotes on the illiquid side, given the 
heightened risk of unrealized losses within seconds. 

- Arbitrary Execution Algorithm: An opportunity to switch from pegging on passive 
side to execution by market if a favourable price movement is anticipated. 

Output Variables 
For each imbalance event, we compute the post-event metrics listed in Table 2. The 
interpretation of these metrics may depend upon the role of market participants, e.g.: 

- Market Maker: When keeping a quote on the illiquid best side (Liq—), positive post-
event forward P&L, as we calculate it, means an unrealized loss for market maker, 
negative P&L means gaining an unrealized profit. 



4 
 

Table 2. Performance metrics to capture post-event price dynamics. 

Name Description 
Forward P&L Liq—(bps) Profit/loss (in basis points) for the Liq—TOB side at the end of post-event 

time interval, e.g., 5 seconds. Positive, if the side has been moved in the 
direction implied by imbalance. 

Forward P&L Liq++ (bps) Same as above, but for the liquid side. 
Forward price change 
direction Liq-- 

Captures price change direction of the illiquid side at the end of post-
event time interval: 
+1 if the price moved in the direction implied by the imbalance. 
-1 if adverse movement. 
0 if unchanged. 

Forward price change 
direction Liq++ 

Same as above, but for the liquid side. 

First price change 
direction Liq-- 

Captures the initial price movement within the 5-second post-event time 
window: 
+1 if the illiquid-side price moves first in the imbalance-implied direction. 
-1 if adverse. 
0 if no change. 

First price change 
direction Liq++ 

Same as above but for the liquid TOB side. 

CME ES TOB liquidity and spread trading profitability 
The CME ES futures contract is a highly liquid instrument, typically trading at a one-tick 
spread between the best bid and ask prices. However, two trends have emerged over the 
study period (2018–2024): 

- Declining profitability of spread trading (in basis points): The tick size remains 
fixed at $0.25, while the S&P 500 index has grown consistently (except of year 2022) 
causing decrease of the profitability of spread trading (measured in basis points). 

- Reducing TOB Liquidity (in a number of contracts): The average number of 
contracts available at the TOB has exhibited a year-over-year decline over the study 
period (2018-2024). 

In Table 3 we provide statistics of distribution of the spreads (in ticks) across our sample 
dataset (which record market state at imbalance time) . 

Table 3. Per annum TOB spread distribution (in ticks) in the sample dataset. 

Spread (ticks) 2018 2019 2020 2021 2022 2023 2024 
1 486,051 435,688 600,610 570,049 573,748 520,694 463,240 
2 2,135 176 15,359 518 4,502 368 1,499 
3 86 2 1,972 11 64 27 46 
4 17 2 604 4 18 10 6 
5 4  178 1 5 5 3 
6 1  74   1 2 
7 1  17     
TOTAL 488,295 435,868 618,814 570,583 578,337 521,105 464,796 
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Other liquidity metrics and their year-of-year dynamics are provided in Table 4. 

Table 4. Year-of-Year TOB liquidity metrics (2018-2024) at imbalance times 

Metrics 2018 2019 2020 2021 2022 2023 2024 
Avg Spread (bps) 0.92 0.87 0.82 0.53 0.62 0.59 0.46 
Avg Contract Price 2,727.96 2,894.07 3,202.77 4,257.29 4,100.23 4,278.86 5,461.97 
Avg Size Liq-- Side 16.58 18.20 9.01 14.38 4.95 9.25 8.29 
Avg Size Liq++ Side 106.90 108.04 59.22 147.00 31.66 56.60 48.60 

 

Observed facts have direct implications for CME ES market participants as narrowing 
spreads and declining contract sizes pressure spread trading profitability.  

Estimate of empirical probability of price change 
For each observed imbalance event, we classify the 5-second post event time price change 
as: 

Table 5. Forward price movement direction 

Direction (D) Condition 
D = +1 Price of TOB side (bid or ask) changes in the direction predicted by imbalance 

(forecast match) 
D = -1 Price of TOB side (bid or ask) changes in adverse direction to predicted by 

imbalance 

D = 0 Price remains unchanged 

 

We separate calculation of price change direction for illiquid and liquid sides of the TOB. 
We will focus mostly on the dynamics of the illiquid side of the TOB as this is a decision 
point for: 

- Market maker: either to keep quote or cancel it. 
- Execution algorithm: potentially to turn into aggressive execution by market. 

Probability Estimate 

We will aggregate our imbalance cases into the buckets (single or two dimensional) and 
estimate probability of forecast match or adverse move using indicator variables 
calculated for all samples in the bucket. 

Modelling weighted mid-price process by random walk 
Let’s consider discretionary sampled (t = 1 sec) weighted mid-price process: 
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𝑃(𝑡)  =  
𝑃𝑟𝑖𝑐𝑒𝑏𝑖𝑑(𝑡) · 𝑆𝑖𝑧𝑒𝑎𝑠𝑘(𝑡)  +  𝑃𝑟𝑖𝑐𝑒𝑎𝑠𝑘(𝑡) · 𝑆𝑖𝑧𝑒𝑏𝑖𝑑(𝑡)

𝑆𝑖𝑧𝑒𝑎𝑠𝑘(𝑡)  +  𝑆𝑖𝑧𝑒𝑏𝑖𝑑(𝑡)
          (1) 

 

Benefits of choosing the weighted mid-price for liquid contract (with a lot of order book 
updates during a single second): 

- Smoother price path: It generates a much smoother price path comparing to 
traditional mid-price. For example, it will not "jump" as much as classic mid-price 
when an aggressive order is erasing the illiquid side of TOB. The smoothness means 
increments of the weighted mid-price are much smaller and much more frequent 
than of traditional mid-price. 

- Random Walk assumption: Because the individual increments are smaller and 
frequent (>> 1 per second), the process of aggregating these small changes over a 
fixed size window results to a large number of small independent steps. Then due to 
Central Limit Theorem returns of discretionary sampled pricing process converge to 
normal distribution and the process itself could be modelled by random walk (RW). 

By estimating parameters of random walk and calculating minimal distance the weighted 
mid-price shall move to ensure TOB price change in the direction implied by imbalance, we 
will be able to estimate model probability of TOB price change and compare it against 
probability estimated from the market data. 

Parameters of random walk 

Drift (μ) 

We assume the drift μ is negligible on the 5 second time horizon. 

Volatility (σ) 

We estimate exponentially averaged historical volatility (t) of 1 second log returns of the 
weighted mid-price process P(t). We assume that volatility estimate is constant during post 
event time horizon.  

Probability of random walk to terminate above the barrier α 
For the driftless random walk process P(t) with 1 second volatility (t) and P = 0 at the 
imbalance time t = 0, a probability of the process to end above the threshold α at time t is 
given by: 

Prob(𝑃(𝑡) ≥ 𝛼) = 1 − ϕ (
𝛼

𝜎√𝑡
)     (2) 
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Where Φ is a standard normal CDF,  is 1 second volatility estimate, t = 5 is future time 
horizon from the event time. 

Barrier estimate 

This is trickier parameter to estimate on discretionary sampled data. Ideally, we shall do it 
using raw top-of-the-book price data. 

Let’s first note that we are looking for such nearest future weighted mid-price change which 
corresponds to the TOB price change in the direction of imbalance. We also know (Table 3) 
that most likely TOB price spread after the change will be 1 tick. Then our distance will be a 
distance to the illiquid (Liq--) price level which is rounded to tick plus some eps which is 
defined by extreme TOB size configuration after the change (Figure 1). 

 

 

 

 

 

 

Figure 1. Hitting barrier by RW process 

Let’s estimate eps assuming extreme imbalance configuration after TOB price change. 

For imbalance 0.95 which correspond to liquid/illiquid size ratio 39:1, the eps could be 
directly calculated from formula (1) and results to 1/40 of tick. 

For the average number of contracts on liquid side for year 2023 (Table 4) – 56.6, the 
number of contracts on illiquid side, corresponding to imbalance 0.95 right after TOB price 
change, will be slightly less than 1.5 contracts. 

Exploring relationships between input variables and 
performance metrics 
To explore relationships between our indicators selected to describe a market state at 
imbalance point (Table 1) and performance metrics (Table 2), we will apply simple but quite 
efficient method called bucketing analysis. Step-by-step procedure includes: 

Liq—side price level 

P(t) 

t=0 (event time) t=5 (sec) 

Barrier at P(t=0) + α  
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(1) Choose an input variable to explore, e.g., imbalance, norm Liq-- size, volatility, or 
combination of variables and performance metric. 

(2) Split the min-max range of the input variable into intervals (buckets). We will use 
these two methods:  
• Equal width buckets: Divides the range into equal size buckets. For example, 

positive values of the imbalance could split into 0.5-0.6, 0.6-0.7, … 
• Equal frequency buckets: Divides the data into N buckets where each bucket 

has approximately the same number of samples.  
(3) Aggregate cases into the buckets and calculate the average value of the selected 

metric(s).  
(4) Visualize and analyse results. 

Bucketing Analysis - Imbalance 
- Input: Imbalance indicator from the Table 1.  
- Buckets: Our data set includes cases with | imbalance | > 0.5. Imbalance only has 

upper limit 1.0. The step we use for aggregating our cases is 0.1 
- Performance metrics: For each bucket we calculate these metrics: 

• Case count: Number of cases in the bucket. 
• Average value of the forward P&L Liq— side: This is average value of the forward 

P&L Liq— side available for each imbalance case (see Table 2). 
• Average value of the forward P&L Liq++ side: This is average value of the forward 

P&L Liq++ side available for each imbalance case (see Table 2). 
• Liq—side First Price Change: We estimate two probabilities from the data using 

first price change direction Liq—variable (see Table 2). 

o Match forecast probability: This is estimated by dividing a number of cases in 
the bucket for which the given variable takes a value 1 to the total number of 
cases in the bucket. 

o Adverse move probability: This is estimated by dividing a number of cases in 
the bucket for which the given variable takes a value -1 to the total number of 
cases in the bucket. 

• Liq—side End of Interval Price Change: We estimate two probabilities from the 
data using forward price change direction Liq-- variable (see Table 2). 

o Match forecast probability: This is estimated by dividing total number of 
bucket cases for which this variable takes a value 1 to the total number of 
cases in the bucket. 
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o Adverse move probability: This is estimated by dividing total number of cases 
in the bucket for which the given variable takes a value -1 to the total number 
of cases in the bucket. 

• Random walk probability of matching forecast:  To calculate this probability for 
each case in the bucket (for illiquid side of the TOB Liq--), we use historical 
volatility estimate on 1 second periodic log-returns of weighted mid-price (Table 
1). The barrier is estimated by procedure described above. The probability is 
calculated by formula (2).  

Analysis results 
The results for year 2023 are provided in the table below. The results for 7 years 2018-2024 
are available in Appendix 1. 

 

Figure 2. Dependency of performance metrics from the TOB size imbalance – Bucketing analysis results 
for 2023 

Forward 5 sec unrealized P&L (bps) plot 

On this plot we observe close to linear dependency of forward unrealized P&L from the 
imbalance. The more extreme is TOB side imbalance the larger expected forward P&L.  

This is true for both illiquid and liquid sides of the TOB. 
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Figure 3. Dependency plot of forward return (P&L) from the imbalance - Year 2023 

Let’s note that for extreme buckets [0.9 to 1.0] and [-0.9 to -1.0] the forward P&L expected 
value in 2023 is roughly 0.26 bps, looking at average tick spread value 0.59 bps for 2023 
(see Table 4), we can estimate expected loss of the market maker who keeps its 
quote/order on the illiquid side. The expected loss in presence of such extreme imbalance 
will be approximately 40% of the spread. 

Empirical vs RW model probability plot 

The plot shows dependency of both: (i) empirical probability (matching imbalance forecast) 
for illiquid side of the TOB; and (ii) RW model probability upon TOB imbalance value.  

 

Figure 4. Dependency of empirical forecast match probability of the illiquid side of TOB and RW model 
probability from imbalance. Year 2023 

The fact that a simple model based on a pure theoretical construct closely matches 
empirical probabilities highly likely indicates that the core driver of directional changes at 
the top of the book in presence of the imbalance is the random arrival/cancellation of the 
quotes/orders from market participants.  
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RMSE of residuals of two probabilities for 2023 RMSE is 0.006, this is good match and 
provides strong empirical support for the Random Walk model applicability at the 
microstructure level. The results for 7 years 2018-2024 are available in Appendix 1. 

Bucketing analysis - Volatility 
Let’s estimate impact of volatility on unrealized P&L and probability of illiquid side price to 
change in the direction indicated by imbalance.  

Let’s group all imbalance cases in our dataset into 10% deciles by volatility and estimate 
these two metrics for each bucket. 

Note: As Volatility estimator we will use v60s1 which is EMA based volatility estimator on 
one second log returns of the weighted mid-prices with EMA averaging period = 60. 

Bucket analysis of volatility impact. Results for year 2023 
The results for year 2023 are provided in the table below. The results for all 6 years 2018-
2024 are provided in Appendix 2. 

Forward 5 sec unrealized P&L and probability of TOB price change in the direction 
forecasted by imbalance are low for law volatility and increased for higher volatility. 
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Figure 6. Dependency charts of forward return and probability of illiquid side of the TOB to erase from 
market volatility 

 

Two-dimensional bucket analysis by Imbalance and Volatility factors 
The results for year 2023 are provided below. The results for all 6 years 2018-2024 are 
provided in Appendix 3. 

For Volatility we used these buckets: 0 to 0.333, 0.333 to 0.667, 0.667 to 1.0 
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Figure 7. 2D dependency charts of forward return and probability of illiquid side of the TOB to erase from 
the imbalance x market volatility 

Liq—normalize size factor 
This is a ratio of the TOB illiquid side size at the time of the event to the average size over 
past two minutes of this side of the book. Intuitively, this variable should correlate with TOB 
imbalance 

Bucket analysis by Liq--normalized size factor. Results for year 2023 
The results for year 2023 are provided in the table below. The results for all 6 years 2018-
2024 are provided in Appendix 4. 

Both unrealized P&L and probability of illiquid TOB side price change are decreasing when 
Norm Liq-- side size is increasing. 
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Figure 8. Charts of forward return and probability of illiquid side of the TOB to erase depending upon a 
market volatility 

Benchmark algorithms 
In this section we will compare three naïve MM algorithms that on every imbalance event 
taking place shall make a decision either to continue to quote the market on the illiquid 
side of the TOB or cancel the quote. 

The “scoring” factors are: 

- TOB imbalance. 
- Normalized size of the illiquid side of TOB. 
- RW model probability of price change of the illiquid side in the direction implied by 

imbalance. 

Assuming more extreme losses correlate with lower values of the scoring factor, we can 
calculate an expected average loss which cancels quotes when scoring factor value for the 
sample is below some threshold: 
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ℒ(𝑐) = 𝑬[𝑌|𝑆 ≥ 𝑄𝑠(𝑝)]        (5) 

where: 

- c is a cancellation rate (e.g., 0.1 for 10%) 
- p= c is a target quantile for the scoring factor 
- S is a scoring factor used to decide either to cancel the quote or keep it 
- QS(p) is the p-th quantile of the S distribution 
- Y is P&L (loss) in bps at the end of the time interval since the imbalance event. 

Calculating the average loss ℒ(𝑝) for different cancellation rates we build performance 
curve for the algorithm utilizing the given scoring factor. 

Forward loss (Y) dependency on time interval duration 
Let’s estimate average forward P&L/loss (in basis points) at the end of 1, 3, and 5 second 
time intervals since the event time. Then for the years 2018-2024 we observe the following:  

 

Figure 9. YoY average forward P&L (MM loss) on 1-, 3-, and 5-sec time horizon from imbalance event 

Considering loss at the end of 5 second time interval as 100% we observe that most of the 
loss takes place by the end of the first second with an evident loss decay after 3rd second: 

 

Figure 10. YoY average loss attribution on 1-, 3-, and 5-sec time horizon from the imbalance event 

Dataset for algorithm performance comparison  
We will review/compare algorithms on years 2018-2024. Sample size for every year could 
vary in the range 300,000-500,000 imbalance cases selected per year. 
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We accept only samples with | imbalance | > 0.7 excluding from consideration cases with 
low or medium imbalance. Random sampling with floating acceptance threshold allows us 
to achieve target annual dataset size. 

For each sample accepted we collect at minimum three scoring factors mentioned above 
and forward P&L in bps/loss estimated on 1-second and 5-second time interval since the 
event time. 

Scoring factor performance results 2018-2024 
The results for the years 2018-2024 for the algorithm utilizing the scoring factors we’ve 
chosen are provided below in the form of performance curve to demonstrate the trade-off 
between cancellation rate (X-axis) and average forward loss in bps (Y axis) of the algorithm. 
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Figure 11. Forward average loss at different cancellation rates of the naïve algorithms utilizing different 

scoring factors. Years 2018-2024, 5-sec and 1-sec forward time intervals. 

Observations: 

- On 5 second time interval the best performance, i.e., a minimal loss under various 
cancellation conditions is demonstrated by the algorithm utilizing the Norm Liq— 
scoring factor. It consistently outperforms two others on all years 2018-2024. 
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- On 1 second time interval the algorithm utilizing RW model probability 
demonstrates best performance on all years except of 2020 and 2022 which both 
are characterized by higher-than-average market volatility. On these two years the 
algorithm using Norm Liq— scoring factor provides best performance. 

Learning a scoring function with the neural network 
Let’s formalize scoring function learning task as an optimization problem: 

- We would like neural network (NN) to learn scoring function S = f(x), where x is a 
vector of input features known at the time of the imbalance event. The left tail of 
scoring function corresponds to more extreme state of the market and is expected 
to concentrate larger losses Y (forward P&Ls) 

- For a chosen cancellation rate c = p (0 ≤ p < 1), the trading policy is to cancel the 
quote on the illiquid side of the TOB if S < QS(p), which is the p-th quantile of the 
distribution of scoring factor S. Otherwise to continue to keep the quote on the 
market. 

- The average loss ℒ(𝑐) 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑖𝑛𝑔 𝑜𝑢𝑟 𝑡𝑟𝑎𝑑𝑖𝑛𝑔 𝑝𝑜𝑙𝑖𝑐𝑦 is: 
-  

ℒ(𝑐) = 𝑬[𝑌|𝑆 ≥ 𝑄𝑠(𝑝)] 
 

- The goal is to minimize the sum of the average losses for a set of cancellation rates. 

The optimization task 

Find the function f(x) (parameterized by the NN) that minimizes the weighted sum of 
average losses across a set of cancellation rates {ck} or equivalently, quantiles pk = ck: 

min
𝑓

∑ 𝑤𝑘 · 𝐄[𝑌|𝑆 ≥ 𝑄𝑠(𝑝𝑘)]          (6)

𝐾

𝑘=1

 

where wk are the weights optionally used to prioritize the losses. 

 NN based optimization framework 
To solve the formulated optimization problem, we will explore feed forward neural networks 
(FFNN). 

Framework Architecture 
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- Input: features x ∈ ℝn where x includes raw imbalance, normalized size of TOB 
illiquid side, RW probability estimate for the illiquid side to erase, volatility 
estimates. The x could optionally be extended with various non-linear 
transformations of raw features tailored for particular needs.  

- Network: Standard feed-forward NN (FFNN) with a few layers and scalar output will 
be used to learn scoring function: 

𝑓𝜃: ℝ𝑛 → ℝ, ŷ = 𝑓𝜃(𝒙) 

- Label variable Y: this is unrealized forward P&L/loss of MM of illiquid TOB side in 
basis points. We use two intervals to estimate forward losses: 1and 5 second. 
 

- Percentile thresholds: It is not clear how to choose thresholds for scoring function 
of unknown shape, so we re-calculate/adjust them dynamically after forward pass 
of the training cycle using NN output distribution Ŷ (the scoring function): 

𝑞𝑘 = 𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒(ŷ𝑗 , 𝑝𝑘), 𝑝𝑘 ∈ {0.1,0.2, … ,09} 
 
To improve stability of these thresholds a smoothing procedure could be applied. 
 

- Loss function: For each percentile pk and its threshold qk, we compute the following 
loss function for the sample batch of size N: 

ℒ𝑘 = ∑
𝑦𝑗

1 − 𝑝𝑘

𝑁

𝑗=1

· (
ŷ𝑗 − 𝑞𝑘


) 

where the first term yj is the unrealized forward P&L/loss of the sample, and the 
second term is a differentiable approximation of our trading policy Pkj with respect to 
sample j and threshold qk: 

𝑃𝑘𝑗 = (
ŷ𝑗 − 𝑞𝑘


) ,    (𝑧) =

1

1 + 𝑒−𝑧
 

 
where (z) is sigmoid function, and τ > 0 is its parameter controlling the sigmoid 
transition sharpness from 0 to 1. 

Total loss is then computed as: 

ℒ =  ∑ ℒ𝑘

𝐾

𝑘=1

 

- Total loss gradient: The gradient of the loss function ℒ𝑘 w.r.t scoring function 
output: 
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𝜕ℒ𝑘

𝜕ŷ𝑗
=

𝑦𝑗

 · (1 − 𝑝𝑘)
· (

ŷ𝑗 − 𝑞𝑘


) (1 − (

ŷ𝑗 − 𝑞𝑘


)) 

NN training 
We split available sample data set on training/validation set and true out-of-sample set.  

Years used for NN model training are 2018-2020.  

Years used for out-of-sample run are: 2021-2024. 

The parameters of NN found during training phase are not changed during full out-of-
sample run. Model re-training will likely improve performance. 

We also separately train NN on 1-second and 5-second forward returns. 

Out-of-sample performance of the NN-based scoring function 

Results 2021-2024 
The results for the years 2018-2024 are provided in the form of performance curve to 
demonstrate trade-off between cancellation rate (X-axis) and average forward loss in bps (Y 
axis) of the algorithm. The charts provide results of three different scoring factor-based 
algorithm implementing our trading policy and neural network-based scoring function 
(FFNN) learned from the data 2018-2020. 
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Figure 12. Forward average loss at different cancellation rates of the FFNN scoring function vs naïve 

algorithms utilizing three different scoring factors. FFNN out of sample years 2021-2024. 

Observations: 

- The algorithm utilizing FFNN learnt scoring function outperforms all naïve models 
on every out-of-sample year: 2021-2024.  

- The FFNN dominance is much sharper on 1 second forward loss (see loss 
attribution chart as well).  

- That’s true in both projections: (i) a lower unrealized loss for the same cancellation 
rate; and (ii) lower cancellation rate (and higher trading turnover) for the same target 
loss level. 

Conclusion 
In this study we analysed the short-term price dynamics of the CME ES front contracts at 
the moments of observed TOB quote imbalances. Our findings confirm that TOB imbalance 
could serve as an effective predictor of near-term market movement direction, with 
statistical significance validated over a 5-second post-event horizon.  

We evaluated a few other factors as predictors of near-term market movement direction, 
alone or in combination with imbalance factor. One of them is probability of the market 
move in the direction implied by imbalance by the end of 5-sec post event horizon. To 
quantify such a probability, we employed a driftless random walk model. With realized 
volatility estimated from one-second log returns of the weighted mid-price process, and a 
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price barrier calculated as a distance to the nearest weighted mid-price that ensures one 
tick change of the TOB prices in the direction of imbalance, the RW model probability is 
matched well with probability estimated directly from the sample data. 

With thousands of imbalance events occurring per session, a typical decision for the 
market maker or any other execution algorithm, which is keeping a quote or order on the 
illiquid side of the TOB is to decide whether to continue to quote the market or cancel the 
quote. We frame this as an optimization problem: find a scoring function that minimizes 
the expected unrealized forward loss (1- and 5-second horizons) under a simple decision 
policy across various cancellation rates. 

Moving beyond single-factor heuristic algorithms, we introduce a "Percentile Optimization 
Framework" to train a multi-factor scoring function parameterized by a Feed-Forward 
Neural Network (FFNN).  

This framework does not merely predict risk but directly optimizes the outcome of the 
decision policy itself. By minimizing a loss function that is a sum of average losses across 
multiple cancellation rates, the model learns a robust scoring function that performs well 
under both aggressive and conservative operational constraints (target cancellation rate), 
ensuring the learned strategy is directly tied to forward P&L/loss. 

The empirical results are decisive. When trained on data from 2018-2020 and evaluated on 
a multi-year out-of-sample period (2021-2024), the FFNN-based algorithm demonstrated 
consistent outperformance over all single-factor benchmarks. This pattern was observed 
across every out-of-sample year and for both forward time horizons. 
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Appendix 1. Imbalance bucketing analysis for 2018-2024 

Year 2018 Results 

 

RMSE = 0.015 (Forecast Match Prob vs RW Prob Estimate) 

Year 2019 Results 

 

RMSE = 0.0049 (Forecast Match Prob vs RW Prob Estimate) 
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Year 2020 Results 

 

RMSE = 0.0073 (Forecast Match Prob vs RW Prob Estimate) 

Year 2021 Results 

 

RMSE = 0.0038 (Forecast Match Prob vs RW Prob Estimate) 



25 
 

Year 2022 Results 

 

RMSE = 0.0045 (Forecast Match Prob vs RW Prob Estimate) 

Year 2023 Results 

 

RMSE = 0.0043 (Forecast Match Prob vs RW Prob Estimate) 
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Year 2024 Results 

 

RMSE = 0.0105 (Forecast Match Prob vs RW Prob Estimate) 
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Appendix 2. Volatility factor analysis 2018-2024 

Year 2018 Results 

 

Year 2019 Results 
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Year 2020 Results 

 

Year 2021 Results 
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Year 2022 Results 

 

Year 2023 Results 
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Year 2024 Results 
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Appendix 3. Two-dimensional bucket analysis (imbalance 
x volatility factors) 2018-2024 

Year 2018 Results 
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Year 2019 Results 

 

Year 2020 Results 
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Year 2021 Results 

 

Year 2022 Results 
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Year 2023 Results 

 

Year 2024 Results 

 

 



35 
 

Appendix 4. Liq—normalized size factor analysis 2018-
2024 

Year 2018 Results

 

Year 2019 Results 
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Year 2020 Results 
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Year 2021 Results 

 

Year 2022 Results 
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Year 2023 Results 

 

Year 2024 Results 

 

 


